

Middle East Technical University

Informatics Institute

IDENTIFYING TECHNICAL DEBT AND TOOLS

FOR TECHNICAL DEBT MANAGEMENT IN

SOFTWARE DEVELOPMENT

Advisor Name: Prof. Dr. Altan KOÇYİĞİT

(METU)

Student Name: Tolga MURATDAĞI

(Software Management – SM 589)

January 2024

TECHNICAL REPORT

METU/II-TR-2024-

Orta Doğu Teknik Üniversitesi

Enformatik Enstitüsü

YAZILIM GELİŞTİRMEDE TEKNİK BORÇ

TANIMLAMA VE TEKNİK BORÇ YÖNETİMİ

ARAÇLARI

Danışman Adı: Prof. Dr. Altan KOÇYİĞİT

(ODTÜ)

Öğrenci Adı: Tolga MURATDAĞI

(Yazılım Yönetimi – SM 589)

Ocak 2024

TEKNİK RAPOR

ODTÜ/II-TR-2024-

i

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Internal Use)

2. REPORT DATE

19.01.2024

3. TITLE AND SUBTITLE

IDENTIFYING TECHNICAL DEBT AND TOOLS FOR TECHNICAL DEBT MANAGEMENT IN

SOFTWARE DEVELOPMENT

4. AUTHOR (S)

Tolga MURATDAĞI

5. REPORT NUMBER (Internal Use)

METU/II-TR-2024-

6. SPONSORING/ MONITORING AGENCY NAME(S) AND SIGNATURE(S)

Software Management Master’s Programme, Department of Information Systems, Informatics Institute,

METU

Advisor: Prof. Dr. Altan KOÇYİĞİT Signature:

7. SUPPLEMENTARY NOTES

8. ABSTRACT (MAXIMUM 200 WORDS)

This term project explores the concept of technical debt in software development, as initially articulated by

Ward Cunningham in 1992. Technical debt is a multifaceted compromise that involves finding a balance

between speed and the necessity for future changes. The study classifies many types of debt that occur at

different stages of the software development life cycle, including complexity at the code level, challenges in

design, and compromises in architecture. At the same time, it assesses specialist tools such as visualization,

dynamic analysis, and static analysis tools that are designed to facilitate efficient debt management. This

research takes a different approach compared to previous studies by providing a full review of technical debt

management methods that are commonly used and can be applied at every stage of software development.

The study provides comprehensive information on fundamental concepts, methods for recognizing technical

debt, and evaluations of tools. It is a significant asset for organizations dealing with the complexities of

technical debt, enabling them to make well-informed decisions in software development.

9. SUBJECT TERMS

Technical Debt, Technical Debt Management Tools, Software

Development Life Cycle

10. NUMBER OF PAGES

71

ii

TABLE OF CONTENTS

ABSTRACT .. 1

CHAPTER 1 ... 2

INTRODUCTION ... 2

CHAPTER 2 ... 4

BACKGROUND ... 4

2.1. What Is Technical Debt .. 4

2.1.1. Technical Debt Landscape .. 4

2.1.2. Technical Debt Timeline ... 5

2.1.3. Relationship between Technical Debt and Source Code .. 6

2.1.4. Relationship between Technical Debt and Architecture .. 8

2.1.5. Relationship between Technical Debt and Production .. 9

2.2. Types of Technical Debt ... 11

2.3. Consequences and Impacts of Technical Debt .. 15

2.4. Methods and Strategies for Identifying Technical Debt .. 16

CHAPTER 3 ... 19

RELATED WORK ... 19

CHAPTER 4 ... 25

TD TOOLS AND RESULTS OF EVALUATION .. 25

4.1. Tools for Technical Debt Management .. 25

4.1.1. The Main Categories of TD Tools .. 25

4.1.2. Main Evaluation Criteria for TD Tools... 28

4.2. TD Tools in Code Quality, Static Code and Security Analysis Category.. 31

4.3. Evaluation of TD Tools in Code Quality and Static Code Analysis Category .. 32

4.4. TD Tools in Dynamic Analysis Category (DAST Tools) .. 38

4.5. Evaluation of TD Tools in Dynamic Analysis Category ... 39

4.6. TD Tools in Architectural and Dependency Analysis Category .. 42

4.7. Evaluation of TD Tools in Architectural and Dependency Analysis Category .. 43

4.8. TD Tools in Automated Testing Category .. 47

4.9. Evaluation of TD Tools in Automated Testing Category .. 48

4.10. TD Tools in Continuous Integration Category .. 52

4.11. Evaluation of TD Tools in Continuous Integration Category .. 54

4.12. TD Tools in Repository and Project Management Category .. 58

4.13. Evaluation of TD Tools in Repository and Project Management Category .. 60

CHAPTER 5 ... 66

CONCLUSION ... 66

REFERENCES .. 68

iii

LIST OF TABLES

Table 1: Types of Technical Debt ..12

Table 2: Related Studies ...22

Table 3: Main Categories and Definitions of Technical Debt Tools ..25

Table 4: Main Criteria and Definitions for Evaluating Technical Debt Tools ..29

Table 5: TD Tools for Code Quality and Static Code Analysis ...31

Table 6: Evaluation of TD Tools for Code Quality and Static Code Analysis ...32

Table 7: TD Tools for Dynamic Analysis ..39

Table 8: Evaluation of TD Tools for Dynamic Analysis ..40

Table 9: TD Tools for Architectural Analysis ...42

Table 10: Evaluation of TD Tools for Architectural and Dependency Analysis43

Table 11: TD Tools for Automated Testing ...47

Table 12: Evaluation of TD Tools for Automated Testing ...48

Table 13: TD Tools for Continuous Integration ...53

Table 14: Evaluation of TD Tools for Continuous Integration ...54

Table 15: TD Tools for Repository and Project Management …..59

Table 16: Evaluation of TD Tools for Repository and Project Management ...60

iv

LIST OF FIGURES

Figure 1: The technical debt landscape ..5

Figure 2: The technical debt timeline………………………………………..6

1

ABSTRACT

This project focuses on the urgent necessity to comprehend and alleviate technical debt in

software development. Technical debt, coined by Ward Cunningham in 1992, refers to the

complex balance between the speed of software development and the need for future

changes.

The project aims to achieve two main objectives. Firstly, it involves classifying different types

of technical debt, including code-level complexities, design obstacles, and architectural

compromises, that occur during the software development life cycle. Secondly, it involves

assessing specialized tools, such as visualization, dynamic analysis, and static analysis tools,

that are specifically designed to effectively manage technical debt.

This research adopts an integrated approach, offering a thorough review of widely-used

technical debt management solutions that may be applied at every step of software

development. Unlike earlier studies that generally concentrate on specific life cycle stages or

individual tools, this research takes a broader perspective.

The study provides a comprehensive overview of technical debt, including its fundamental

concepts, an examination of different debt types and methods for identifying them, and an

analysis of management strategies, including their criteria, benefits, and drawbacks. The

literature review situates the research within the wider academic environment, highlighting

the comprehensive viewpoint.

The project culminates with an evaluation of tool selection, describing the work that has been

accomplished, and highlighting the main points of agreement. This research is a significant

resource for firms who want to make informed decisions in order to manage and reduce

technical debt over the software development life cycle.

Keywords: Technical Debt, Technical Debt Management Tools, Software Development Life

Cycle

2

CHAPTER 1

INTRODUCTION

Many businesses find the objective of comprehending and controlling technological debt to

be appealing. Taking proactive measures to manage technical debt offers organizations the

opportunity to effectively manage the expenses associated with making changes, by

seamlessly integrating technical decision-making and software economics with software

engineering delivery [4].

The concept of Technical debt (TD) was initially introduced by Ward Cunningham in 1992 as a

metaphor to illustrate the intricate trade-off between speed and the need for future revision

when striving to produce high-quality software. In other words, it is a broad word that

encompasses many flaws and deficiencies in software, resulting in the need for more

maintenance work [17].

In the realm of software development, the existence of technical debt is unavoidable and

might even be seen as advantageous in order to attain immediate advantages. Managing the

expense of TD can lead to profitability. Hence, it is crucial to maintain strict control over the

accrued debts [4]. The goal of technical debt management (TDM) in this context is to facilitate

informed decision-making regarding the necessity of addressing a technical debt item and

determining the optimal timing for doing so. Over the past few years, it has arisen as a new

research field [7]. It comprises a sequence of actions aimed at avoiding the accumulation of

undesirable technical debt or managing existing debt to ensure it remains below acceptable

limits. Efficiently managing TD necessitates the utilization of tools. Academia and industry

have recently put forth many strategies for effectively managing technical debt in software

projects [8].

This term project is driven by the need to understand and reduce the negative effects of

technical debt. It specifically focuses on two connected areas: identifying technical debt and

exploring the array of tools available for the effective management of it.

The primary objective of the project is, to investigate and categorize the various forms of

technical debt that arise throughout the software development life cycle. These debts consist

3

of complexities at the code level, obstacles in design, and compromises in architecture. And

the second objective is, to examine and assess a variety of instruments that are specifically

engineered to detect and control technical debt. This consists of visualization tools, dynamic

analysis tools, and static analysis tools, each of which offers a distinct viewpoint on the

reduction of technical debt.

When we look at the academic studies carried out, it can be seen that many studies have been

studied on the subject of "technical debt and technical debt management tools" in recent

years. However, these studies are mainly specialized in a specific area in the software life cycle,

and it is seen that studies conducted specifically on tools are generally conducted on a single

tool. The main purpose of this study and its difference from these studies is, defining the

technical debt issue from an integrated perspective, compile the most used technical debt

management tools that can be used at every stage in the software life cycle, and present the

results by evaluating them within the scope of various criteria.

The report begins with an overview of technical debt (TD), followed by an examination of

specific categories of technical debt, the repercussions and effects of TD, and techniques and

approaches for identifying technical debt. Then, comprehensive information regarding the

instruments utilized for technical debt management, including their primary criteria,

advantages, and disadvantages. Following this, the relevant literature is discussed, detailing

the research. Following this are the considerations for tool selection in technical debt

management, and the report concludes with a summary of the completed work and the

consensus reached.

4

CHAPTER 2

BACKGROUND

In this section, I present the definition of the technical debt term and its relation with the

software project lifecycle. Also, types of technical debts, consequences and impacts of it,

methods and strategies to identify the technical debt especially the tools that are used in

technical debt management.

2.1. What Is Technical Debt

By employing a financial analogy, the notion of technical debt reframes the discussion on

decision making, moving it away from purely technical or economic considerations [3]. This

allows developers and managers to gain a clearer understanding of the trade-offs and

concessions involved in software development, enabling them to make informed decisions

about the future course of action [8]. This section provides an overview of the technical debt

landscape by examining the many manifestations of technical debt in different types of

development artifacts throughout the software development lifecycle.

2.1.1. Technical Debt Landscape

Figure 1 depicts a standard technical debt landscape, showcasing the software development

challenges that engineers address in order to enhance the system [25]. We differentiate

between the apparent concerns, such as demands for additional features and defects

requiring resolution, and the predominantly imperceptible ones, which are only discernible to

software developers. The figure predominantly displays concerns pertaining to evolution on

the left side, while issues concerning upkeep and quality are predominantly shown on the

right side [25].

The emphasis is placed on the largely invisible elements of evolution and maintenance.

Diverse categories of development artifacts, including the code, the architecture, and the

production infrastructure, accumulate technical debt in distinct ways [25].

5

Figure 1: The technical debt landscape [25]

Static checkers can be utilized to subject the code to examination, scrutiny, and evaluation in

order to detect issues of a more minute scale, such as coding standard violations, incorrect or

misleading comments, code clones, and superfluous code complexity. A number of these

technical debt symptoms are commonly known as "code smells." When a system accumulates

technical debt at the source code level, it typically impedes maintainability, thereby

complicating the process of implementing necessary system corrections [9].

Additional technical debt items are more extensive and ubiquitous. These decisions pertain to

the configuration or architecture of the system. Some well-known technical debt symptoms

related to architecture are architecture smells, pattern violations and structural complexity

[8].

Finally, certain technical debt items are linked to the code of closely related software

production artifacts, such as test suites, build scripts, or deployment infrastructure, rather

than the product's code [9].

2.1.2. Technical Debt Timeline

Over time and as the software system evolves, technical debt becomes increasingly significant

[8]. In the hypothetical scenario where the system remains static, the obligation to repay

interest would be null and void, rendering technical debt inconsequential. Figure 2 illustrates

how technical debt develops over time.

6

Figure 2: The technical debt timeline [25]

The moment a technical debt item is introduced into the system, for whatever positive or

negative purposes, is referred to as its “Occurrence” (T1). At “Awareness” (T2) point, the

development organization begins to observe the technical debt item's symptoms. The interval

between T1 and T2 is characterized by a state of blissful unawareness. At “Tipping Point” (T3),

the expenses associated with technical debt begin to surpass the initial benefits derived from

incurring said debt. Prior to T3, one might as well as live with the technical debt because it

provides some benefit. However, following the T3, you should now pay more than you gain.

Finally at the “Remediation” point, the remediation cost comprises the principal amount as

well as all interest that has been accrued. Therefore, remediation frequently requires more

effort than simply reversing the incorrect code and implementing the correct solution at T1.

The remediation may result in a substantially different design than the one you abandoned at

T1 due to the substantial evolution of the context [25].

2.1.3. Relationship between Technical Debt and Source Code

Comprehending the connection between technical debt and the source code is crucial for

understanding the influence of development approaches on software quality and

maintainability. Technical debt commonly appears in the source code of a software

application, serving as a prominent and observable sign of the accumulated debt [1].

7

Here are key points highlighting the relationship between technical debt and the source code:

 Manifestation in Code Quality [16]:

Technical debt is frequently accumulated during the development process when developers

make compromises or employ expedient solutions to meet imminent deadlines. These

concessions can lead to code quality that is less than optimal.

Code-level technical debt include problems such as code smells, duplications, intricate code

architectures, and other deviations from optimal coding standards.

 Readability and Maintainability [1]:

Technical debt present in the source code can have a negative impact on the codebase's

readability and maintainability. Inadequately composed or intricate code poses difficulties for

developers in comprehending and altering the code in subsequent instances.

Accumulated technical debt can result in a codebase that is challenging to navigate, impeding

the effectiveness of development and maintenance tasks.

 Impact on Bug Rates [16]:

Technical debt in the source code is frequently linked to a higher probability of producing

software defects. Unresolved code-level problems can lead to a greater occurrence of flaws

and complications throughout the software development process and in the final output.

 Refactoring and Technical Debt Reduction [13]:

Refactoring is a prevalent approach used to tackle technical debt at the code level. Code

refactoring is the process of reorganizing the source code to enhance its quality, readability,

and maintainability, while keeping its exterior behavior unchanged.

Efficient refactoring aids in diminishing technical debt, enhancing the resilience of the source

code, and aligning it with coding standards.

 Continuous Monitoring and Improvement [15]:

Regularly monitoring the source code is essential for detecting and preventing the building of

rising technical debt. Code quality metric analysis tools facilitate continuous improvement

initiatives.

8

Through proactive management of technical debt in the source code, development teams may

guarantee the codebase's long-term adaptability and maintainability.

 Documentation and Comments [15]:

The technical debt present in the source code encompasses more than simply the functional

features. Additionally, it encompasses the documentation and comments included within the

codebase.

Insufficient or obsolete documentation inside the source code leads to gaps in understanding,

highlighting the importance of addressing technical debt connected to documentation.

To summarize, technical debt and the source code are closely interconnected. The choices

taken throughout the coding process, the compromises between efficiency and excellence,

and the methodologies adhered to by developers are all evident in the source code. Tackling

technical debt at the source code level is essential for ensuring a robust and enduring software

development process. Regular code reviews, refactoring, and a dedication to coding best

practices are essential components in efficiently controlling technical debt inside the source

code.

2.1.4. Relationship between Technical Debt and Architecture

Architectural technical debt refers to the metaphorical burden caused by major design

decisions, such as those related to structure, frameworks, technologies, and languages, that

may have been appropriate or even ideal at the time they were made, but ultimately impede

future advancement. Unlike code-level technical debt, which can be easily recognized and

refactored with minimal work, architectural debt is challenging to detect, has a wide range of

costly remedies, is intimidating, and is typically deliberately avoided [1].

Architectural technical debt elements have a significant influence on the entire system as they

are intricately connected in a complicated web of interdependencies. Poorly conceived

architecture leads to cost accumulation as the system becomes increasingly difficult to adapt.

Modifying fundamental architectural decisions can prove significantly more challenging than

modifying source code, particularly as the system expands, due to the extensive repercussions

such changes entail. Remediation is a significant endeavor that may extend across numerous

9

iterations or deplete a substantial portion of the available resources throughout multiple

releases [16].

A well-designed architecture that is followed during system implementation directly

correlates with a controllable buildup of technical debt. For example, if the objective is to

maintain the system for several decades and adapt to evolving technology, the system's

architecture should facilitate the division of responsibilities, employ independent technology

layers for effortless upgrades, and guarantee that modifications are confined to facilitate the

addition of new features. These architecture considerations are crucial and should guide the

design reviews and be evident in the coding, not just at the start of the system's development

but throughout its entire lifecycle [18].

The system must to be meticulously crafted and supervised to ensure compliance with "quality

attributes," which refer to architecturally critical requirements pertaining to the system's

reliability, security, and maintainability. Quality characteristics direct attention towards the

interrelated parts of the system, including its performance under varying circumstances, data

flow and management, and its reliance on other software components such as databases, user

interface and backend frameworks, middleware, etc [16].

There are multiple approaches you can employ to identify technical debt in the system's

design while going through the various stages of technical debt analysis. Generally, the most

effective strategy involves a blend of these activities [25]:

 Inquire with the designers regarding the system's well-being or any issues it may be

experiencing.

 Analyze the structure of the architecture.

 Analyze the code to have a deeper understanding of the underlying structure.

2.1.5. Relationship between Technical Debt and Production

The production phase of the software development process involves the following four

activities; build (create the executable software), system tests (validate that software is

ready), deployment and open it.

10

So, we can handle the technical debt in production phase in three main categories:

 Build and Integration Debt:

Inadequate or improper design and coding of the build scripts themselves: Build scripts are

essentially lines of code, occasionally aided by specific code included into the application being

developed [8].

Misalignment between the build dependencies and the actual code: Due to the rapid evolution

of the program, newly introduced components may lack backward compatibility [9].

 Testing Debt:

Inadequate or improper design and coding of tests: Test suites are essentially code and are

occasionally aided by specific code integrated into the developing program. Extensive

collections of automated tests may lack a distinct objective; when they encounter failure, it is

likely that something is amiss, but it is uncertain which elements caused the failure and the

underlying reasons behind it [9].

Misalignment between the tests and the actual code: Due to the rapid evolution of software,

there is a possibility that new tests may be absent or may only assess an outdated

understanding of the requirements. Tests that are highly detailed and implemented early in

the development process, particularly when using mockup software, can become difficult to

maintain due to the intricate connections they build with the production code. A little

modification could result in the failure of lots of tests [8].

Challenges of SaaS (Software as a Service) contexts: The alignment of development, testing,

and production environments can get disrupted. If developers utilize version X, the continuous

integration system should be version Y, and the production servers should be version Z. If

these conditions are not met, the tests being conducted may not be targeting the correct

elements, and the developers may be unaware of this discrepancy. Alternatively, a code that

functioned flawlessly throughout the development phase may encounter issues when

implemented in the testing infrastructure [25].

11

 Infrastructure Debt:

In the structure of the operational system: Within the framework of the operational system,

one potential issue is the absence of "observability," also known as monitoring debt [8].

In scripts: This may involve scripts that implement the deployment of the code, the data, and

the updates on the operational system [9].

The absence of verification for deployment scripts contributes to the accumulation of

technical debt. Verifying the compatibility of scripts with the architecture is crucial in order to

prevent inconsistencies between development, testing, and production environments and to

reduce potential risks. [25]

2.2. Types of Technical Debt

Technical debt may present itself in a multitude of manifestations during the course of

software development. Different categories of technical debt can be distinguished according

to their characteristics and origins. Technical debt can be categorized into two main types [15]:

 "Unintentional TD," which is characterized by involuntary and nonstrategic

movements, is frequently attributed to inadequately planned operations resulting

from the presence of inexperienced personnel or alterations in the environment.

 "Intentional TD" refers to the purposeful and planned decision-making by

professionals to seek short-term benefits by taking shortcuts, considering other

options, and leaving projects unfinished.

In addition, TD can manifest in various activities and stages of the software development life

cycle. With this, according to research in literature 10 different and most seen types of

identified technical debts is shown at Table 1 [2].

12

Type of TD Definition

Code Level

Code-level technical debt encompasses any poor or

compromised elements included in the source code of a

software application. This encompasses suboptimal or

inadequately organized code, code with undesirable

characteristics, redundant code, and other problems that,

although they may offer a temporary resolution, can impede

the long-term maintainability, readability, and general

excellence of the codebase [2].

Design Level

Design-level technical debt refers to compromises or

deficiencies in the overall architecture and design elements of

a software product. It encompasses suboptimal design choices,

architectural weaknesses, and patterns that may have been

convenient in the short run but can provide difficulties in terms

of scalability, adaptability, and long-term system

maintainability [4].

Architecture Level

Architecture-level technical debt refers to use of outdated

technologies, frameworks, or platforms, leading to potential

security vulnerabilities and maintenance challenges. Also,

architectural choices that hinder the system's ability to scale,

resulting in performance bottlenecks and limitations under

increased loads [1].

Requirements Level

Requirements-level technical debt refers to compromises or

deficiencies in the definition and documentation of software

requirements. It arises when the requirements are ambiguous,

inadequate, or prone to frequent alterations, resulting in

difficulties in the process of creation, testing, and maintenance.

It is crucial to address technical debt at the requirements level

to ensure that the software matches successfully with

stakeholder expectations and project goals [15].

13

Testing and Quality
Assurance

Technical debt at the Testing and Quality Assurance level

pertains to compromises or shortcomings in the processes of

testing and quality assurance inside a software project. These

factors may encompass insufficient test coverage, postponed

testing operations, and the existence of unattended flaws or

vulnerabilities. Technical debt at the testing and quality

assurance (QA) level can have negative effects on program

reliability, raise the likelihood of faults, and impede the overall

quality of the software product [2].

Documentation

Documentation-level technical debt refers to compromises or

flaws in the documentation of a software project. This may

encompass documentation that is insufficient, outdated, or

poorly organized, hence posing difficulties for developers and

stakeholders in comprehending, maintaining, and expanding

the product. Resolving technical debt at the documentation

level is essential for promoting clear communication, facilitating

knowledge exchange, and assuring the long-term sustainability

of the software [10].

Deployment and
Infrastructure

Deployment and Infrastructure level technical debt pertains to

compromises or shortcomings in the procedures and

infrastructure associated with the deployment and upkeep of a

software program. This could entail the utilization of obsolete

deployment methodologies, non-scalable infrastructure, or

ineffective configuration management. To ensure seamless

and effective deployment procedures, scalability, and general

stability of software in production environments, it is crucial to

tackle technical debt at the deployment and infrastructure

levels [9].

Security Level

Security-level technical debt refers to compromises or

deficiencies specifically pertaining to the security aspects of a

software product. These risks encompass unpatched

14

vulnerabilities, insufficient encryption techniques, and other

security-related concerns. If left unattended, they can

jeopardize the confidentiality, integrity, and availability of the

software. It is essential to prioritize the resolution of security-

related technical debt in order to protect the software against

potential risks and weaknesses [8].

Knowledge and Skill
(People)

People technical debt, in the context of software development,

pertains to the shortcomings or weaknesses in the knowledge

and abilities possessed by the individuals participating in the

process. These factors may encompass inadequate training,

limited expertise in specific technologies, or a knowledge deficit

within the development team. To tackle knowledge and skill

technical debt, it is required to allocate resources towards

training programs, mentorship initiatives, or recruitment of

persons possessing the requisite skills, in order to improve the

overall capabilities [15].

Process Level

Process-level technical debt refers to compromises or

deficiencies in the established processes and methodologies

used in software development. This may involve shortcuts or

suboptimal practices in project management, development

workflows, or quality assurance processes. Addressing process-

level technical debt is crucial for optimizing efficiency,

improving collaboration, and ensuring that the development

team follows best practices throughout the software

development lifecycle [13].

Table 1: Types of Technical Debt

15

2.3. Consequences and Impacts of Technical Debt

Technical debt can result in various outcomes and influences on software development

initiatives and the general well-being of a software system. The following are crucial factors

that emphasize the repercussions and influence of technical debt:

 Increased Development Time: Resolving technical debt frequently necessitates

allocating extra time. As the debt increases, developers may allocate additional time

towards resolving defects, restructuring code, or finding workarounds for

inadequately designed components. This can impede the overall progress of

development [12].

 Reduced Developer Productivity: Developers faced with a codebase encumbered with

technical debt may encounter heightened difficulties in writing new code,

comprehending old code, or executing modifications with efficiency. The decrease in

productivity might result in team members experiencing frustration and burnout [13].

 Higher Maintenance Costs: The expenses associated with sustaining a system

burdened by technical debt are often higher. The complexity and time required for bug

repairs, upgrades, and modifications escalate, resulting in a greater maintenance

burden on development teams [15].

 Quality Compromises: Technical debt frequently leads to trade-offs in code quality.

Compromising on quality to meet strict time constraints or solve immediate

requirements might result in inferior solutions, which in turn can make the codebase

more challenging to maintain, comprehend, and expand [14].

 Increased Bug Count: Technical debt is strongly correlated with a higher incidence of

defects in a software system. Code that is poorly conceived or developed hurriedly is

more susceptible to errors and faults, resulting in a greater number of bugs that must

be handled in the long run [13].

 Risk of Project Failure: Insufficient management of technical debt can lead to its

accumulation, reaching a critical level that jeopardizes the project's success. The

system has the potential to become too intricate, unstable, or challenging to sustain,

hence endangering the project's overarching goals [14].

 Impact on User Experience: The presence of technical debt might have a detrimental

effect on the overall user experience. Technical debt can cause performance issues,

16

unanticipated failures, and system downtimes, which in turn can negatively impact the

user experience, leading to decreased customer satisfaction and retention [12].

 Security Risks: Technical debt may give rise to security risks, including obsolete

libraries, unresolved issues, or insecure coding methodologies. These vulnerabilities

constitute a significant threat to the system's security, potentially leading to data

breaches, illegal access, and other security problems [13].

 Long-Term Maintenance Issues: Prolonged maintenance issues might arise from the

accumulation of technical debt over time if left unattended. Legacy systems that have

accumulated a significant amount of technical debt can become challenging and costly

to operate, potentially necessitating a substantial overhaul or redesign [14].

 Negative Impact on Innovation: Technical debt might hinder the progress of innovation

within a development team. The allocation of resources towards correcting technical

debt may impede the ability to innovate and maintain competitiveness, diverting them

from potential new features or enhancements [13].

 Reduced Team Morale: The presence of extensive technical debt in a codebase can

have a negative effect on the overall morale of the team. Developers may experience

frustration due to the persistent requirement to resolve issues and may lose

motivation if they sense that the codebase is not progressing [12].

To summarize, technical debt has a wide range of ramifications and effects on several areas

of software development, including the effectiveness of development processes and the

ultimate success and longevity of a software system. Effectively managing and reducing

technical debt is crucial for ensuring the sustainability and efficiency of a development

ecosystem.

2.4. Methods and Strategies for Identifying Technical Debt

Within the continually evolving domain of software development, the identification and

management of technical debt play a crucial role in guaranteeing the long-term viability,

maintainability, and efficiency of a codebase. This involves utilizing different approaches and

procedures to uncover and resolve problematic regions [10].

Detailed information about different methods and strategies for identifying technical debt

which are the most used in literature and industry.

17

 Code Reviews [15]:

Code reviews entail a cooperative analysis of the source code by team members to detect any

problems pertaining to coding standards, design patterns, and code quality. During code

reviews, engineers have the ability to identify specific instances when expedient measures

were employed, resulting in possible accumulation of technical debt. Discoveries of

inconsistencies, non-compliance with best practices, and complications frequently yield

valuable insights about the condition of the codebase.

 Static Code Analysis [11]:

Static code analysis is the process of utilizing automated techniques to examine source code

without actually running it. These tools are capable of identifying coding patterns, anti-

patterns, and possible problems such as code smells or security vulnerabilities. SonarQube

and ESLint are software tools that conduct static analysis, enabling teams to detect technical

debt by highlighting instances of coding standards violations and probable problematic

regions.

 Dynamic Analysis [15]:

Dynamic analysis entails evaluating the operational behavior of an application during its

execution. Profiling tools, such as VisualVM, can be utilized to detect performance

bottlenecks, memory leaks, and other runtime issues that contribute to technical debt. This

approach is especially efficient in identifying problems that may not be evident during static

analysis or code reviews.

 Architectural Analysis [10]:

Performing regular reviews of the architecture and design of a software system can help

uncover instances when architectural decisions may have contributed to the accumulation of

technical debt. Architecture review sessions or the utilization of tools such as Structure101

and Sonargraph aid in assessing the general condition of the architecture and revealing

possible technical debt.

Each of these methodologies and tactics adds to a holistic approach for identifying and

resolving technical debt inside a software development project. By combining these

18

strategies, teams can obtain a comprehensive understanding of the codebase and make well-

informed judgments regarding the effective prioritization and mitigation of technical debt.

 Automated Testing [13]:

Insufficient or deficient test coverage can suggest the presence of technical debt. Automated

testing technologies, such as JUnit for unit testing and Selenium for UI testing, assist in

identifying sections of the codebase that are inadequately tested. Inadequate test coverage

can indicate heightened risk and the possibility of accruing technical debt when modifying the

code.

 Documentation Review [15]:

Examining documentation, or the absence of it, is a technique for identifying technical debt

associated with knowledge transfer and maintainability. Obsolete or absent documentation

might result in misinterpretations and challenges in managing the codebase. Doxygen or

Sphinx can be utilized to automatically produce and manage documentation.

 Monitoring and Logging [11]:

Consistently monitoring application logs and performance metrics might reveal any flaws that

may affect the dependability and efficiency of a system in operation. Log analysis technologies

such as the ELK Stack (Elasticsearch, Logstash, Kibana) or Prometheus assist in the

identification and comprehension of runtime issues and their impact on technological debt.

 User Feedback and Bug Reports [15]:

Engaging in the proactive collection and analysis of user feedback, in addition to bug reports,

is an invaluable method for discovering and addressing system issues. During the development

process, users frequently come across issues that are not immediately obvious. Their input

can reveal elements of technical debt that impact the user experience.

To summarize, employing tools to handle technical debt is essential for promoting a proactive

and methodical approach to upholding software quality and sustainability. Industry statistics

demonstrate an increasing dependence on these tools, as surveys indicate that more than

80% of software development teams integrate automated analysis tools into their workflows.

19

CHAPTER 3

RELATED WORK

Many types of papers and blogs are authored by individuals from academia and experts

entrenched in the industry, separately describing what the technical debt is, the importance

and consequences of technical debt in software projects and some tools that are used for

managing technical debt. Nevertheless, a comprehensive analysis is required that integrates

all the information from the publications and blogs. The work may have become obsolete due

to the rapid development and improvement of tools in the industry.

Through an extensive review of the existing literature, it becomes evident that there are

numerous factors to take into account and evaluate when choosing a method for managing

technical debt. No instrument can be designated as "mandatory" since none possesses the

highest level of dominance in every aspect. In the following, the recent related work are

introduced and they are also summarized in Table 4.

In 2018, a study was done by a paper that specifically examines the literature pertaining to

architectural technical debt [1]. The authors chose and examined 47 source publications in

order to analyze and describe the strategies used for identifying architectural technical debt

(ATD). This analysis focused on publishing patterns, the characteristics of these techniques,

and their potential for being adopted in industrial settings. Their research reveals potential

avenues for future investigation in the field of ATD, including the utilization of the temporal

aspect in ATD identification and the subsequent resolution of ATD. The authors emphasize the

necessity for more industrial participation in the formulation, design, and evaluation of ATD

identification approaches.

In 2019, Lenarduzzi et al. published a systematic literature review on the prioritization of

technical debt [2]. The study analyzed 37 carefully chosen studies that encompass the most

advanced methods, criteria, metrics, and tools employed in both practical and research

settings to prioritize technical debt. They have discovered seven strategies that specifically

target the prioritizing of technical debt. The primary finding of their study is the absence of

agreement regarding the crucial elements to prioritize TD and the appropriate methods to

assess them. Their findings indicate that code and architectural debt are the most extensively

20

studied forms of debt when prioritizing. The investigation also verified the absence of a robust,

validated, and generally adopted toolkit specifically designed for prioritization.

Another research in the area was done in 2017, conducted as a systematic literature review

to examine the concept of technical debt in the context of agile software development [3].

The authors made a comprehensive analysis of 38 papers. Their objective was to identify

specific study areas of interest, classify the causes and effects of TD, and determine effective

management strategies and tools. The “DebtFlag” and “NDepend” were cited as tool for

identifying technical debt in source code during agile development. Their findings suggest a

requirement for more tools, models, and standards to facilitate the management of technical

debt in agile development.

In 2015, a study was done to systematically map and provide an overview of the existing

research on technical debt management [4]. This study encompassed various activities,

methodologies, and instruments associated with the topic. They identified a compilation of 10

forms of technical debt, 8 actions for managing technical debt, and 29 instruments for

managing technical debt that were derived from research investigations. Technical debt tools

provide information on their functionality, vendor, categories of technical debt, and the

artifacts they handle. The research suggests that there is a need for additional specialized TD

management solutions. They determined that only 4 out of the total of 29 instruments are

specifically designed for TD management. The remaining 25 tools are modified for TD

identification, drawing from other fields of software development such as static analysis tools

or code smell detection techniques.

In 2020, Avgeriou et al. published a review of the current state of TD tools, with a specific

focus on tools that assist in quantifying technical debt [5]. Their research is focused solely on

analyzing code, design, and architectural technical debt. Their research concentrated on a

collection of 9 software analysis tools: “CAST”, “Sonargraph”, “NDepend”, “SonarQube”,

“DV8”, “Squore”, “CodeMRI”, “Code Inspector”, and “SymfonyInsight”.

In 2021, Saraiva et al. made a systematic mapping study, explored the technical debt tools by

determining the specific activities, features, and types of technical debt that are addressed by

current tools designed to assist in managing technical debt in software projects [6]. Their

research found a total of 50 instruments for Technology Development. The majority of these

21

technologies focus on resolving technical debt associated with code, design, and/or

architecture artifacts. Based on their research, tools that handle the detection and

measurement of TD are still the most common. Nevertheless, it has been noted that current

approaches that concentrate on the prevention, replacement, and prioritizing of TD activities

are indicative of emerging research patterns.

Another study made in 2020 is about assessing the coherence of the utilization of technical

debt language and its alignment with the established conceptual framework [7]. Furthermore,

the paper explores the extent to which the metaphorical origins of the phrase "technical debt"

persist and impact the research. The study's findings indicate that there is still ambiguity

surrounding the origin of metaphorical expression of technical debt in research, and it is

necessary to reduce this ambiguity. Tool designers, like “SonarQube”, are not constrained by

research findings and can contribute to further ambiguity in defining technological debt.

Furthermore, decision makers should utilize risk management models to facilitate the

management of technological debt. Hence, the Architecture Tradeoff Analysis Method and

other Quality Attribute Models can be utilized as valuable resources to enhance the existing

technical debt model.

In 2018, BenIdris et al. published a systematic mapping study. The goal of this study is

classifying TD types and showing the indicators used to detect TD and finding the estimators

used to quantify the TD, evaluating how researchers investigate. Authors, presented the most

common indicators and evaluators to identify and evaluate the TD, and they gathered thirteen

types of TD [8].

In 2021, a study was done to assess a system that prioritizes the avoidance and repayment of

TD. The technology was created and implemented within the information technology division

of a publishing company. The distinctive aspect of this approach lies in the incorporation of

TD management within project management. The evaluation was conducted through a study

that utilized ticket statistics and a structured survey including people from both the observed

IT unit and a comparison unit. The evaluation demonstrates that implementing this paradigm

enhances awareness of the occurrence of Technical Debt [9].

22

Study Author(s) Year Brief

Architectural

technical debt

identification:

The research

landscape

Verdecchia,

R. et al.
2018

This research use the systematic mapping study

approach to identify, classify, and evaluate the

current status of architectural technical debt

identification. The study focuses on three

perspectives: publishing trends, characteristics,

and potential for industry adoption.

Technical Debt

Prioritization:

State of the Art. A

Systematic

Literature Review

Lenarduzzi,

V. et al.
2019

The objective of this study is to examine the

current knowledge in software engineering in

order to comprehend the many Technical Debt

prioritization methodologies that have been

suggested in both academic research and

industry.

Analyzing the

concept of

technical debt in

the context of

agile software

development: A

systematic

literature review

Behutiye,

W. N. et al.
2017

The objective of this study is to examine and

consolidate the current knowledge on technical

debt, including its origins, impacts, and

solutions for managing it within the framework

of agile software development.

A systematic

mapping study on

technical debt

and its

management

Li, Z. et al. 2015

The objective of this research is to gather

information on technical debt and its

management, and conduct a systematic

classification and thematic analysis of existing

studies. This will provide a full grasp of the

notion of technical debt and an overview of the

current research on technical debt

management.

23

An overview and

comparison of

technical debt

measurement

tools

Avgeriou, P.

et al.
2020

Various tools employ distinct terminology,

metrics, and methods to identify and quantify

technical debt. The authors aim to elucidate the

situation by juxtaposing the characteristics and

prevalence of technical debt measurement

tools and scrutinizing the available empirical

data regarding their soundness.

Technical Debt

Tools: A

Systematic

Mapping Study

Saraiva, D.

et al.
2021

This study examines the present status of

technical debt tools by defining the activities,

functions, and types of technical debt that are

addressed by existing tools designed to manage

technical debt in software projects.

On Coherence in

Technical Debt

Research:

Awareness of the

Risks Stemming

from the

Metaphorical

Origin and

Relevant

Remediation

Strategies

Stochel, M.

et al.
2020

This survey report examines the extent to

which technical debt language is used

consistently and aligns with the agreed-upon

conceptual model in current research. The

consistency of addressing technical debt is

crucial for decision makers, as they may

hesitate or even forgo investing in a particular

aspect of the product unless the advantages of

repaying the specific technical debt are

sufficiently evident.

Investigate,

Identify and

Estimate The

Technical Debt: A

Systematic

Mapping Study

BenIdris, M.

et al.
2018

To investigate and comprehend Technical Debt

(TD) in the software business, as well as have a

comprehensive understanding of the present

status of TD research. A total of forty-three

empirical papers on TD were gathered for

classification and analysis.

24

Preventing

Technical Debt by

Technical Debt

Aware Project

Management

Wiese, M.

et al.
2021

This research assesses a strategy that prioritizes

the prevention and payback of TD (technology

debt). The technology was created and

implemented within the information

technology department of a publishing

company. The distinctive feature of this

framework is in the incorporation of TD

management inside project management. The

evaluation was conducted through a study that

utilized ticket statistics and a structured survey

including people from both the observed IT unit

and a comparison unit.

Table 2: Related Studies

25

CHAPTER 4

TD TOOLS AND RESULTS OF EVALUATION

This section will provide concise definitions of popular technical tools used in the software

business. These definitions have been obtained from a literature review within the primary

categories described above. Subsequently, the evaluation of these technical instruments

based on the criteria listed above will be outlined.

4.1. Tools for Technical Debt Management

Multiple tools exist for effectively controlling technical debt in the field of software

development. These techniques often belong to several groups, each focusing on various

aspects of technical debt.

In this part of the study, the main categories and evaluation criteria of TD tools will be

mentioned.

4.1.1. The Main Categories of TD Tools

Technical debt tools typically belong to distinct groups, each designed to tackle unique facets

of software development and upkeep. According to the literature review and some popular

blogs like “forrester”, “medium”, “trustradius”, “softwareadvice”, “peerspot”,

“stackoverflow”, “gartner” “thectoclub” and “comparitech”. The basic classification of

technical debt tools are given in Table 3 [13].

Category Definition

Code Quality and Static Analysis

Tools

These tools mostly assess the source code's quality

without executing it. They detect possible problems,

such as code smells, compliance with coding standards,

and security vulnerabilities, by using static code analysis.

The objective is to uphold the standard of code and

avoid the accumulation of technical debt during the

development process.

26

Dynamic Analysis Tools (Runtime

Analysis)

Dynamic analysis tools primarily assess the runtime

behavior of a software application. Dynamic analysis

tools differ from static analysis tools in that they analyze

the code during execution, allowing for the

identification of issues like as memory leaks,

performance bottlenecks, and unexpected runtime

behaviors.

Dynamic analysis techniques are essential in detecting

and resolving technical debt associated with runtime

problems. Technical debt can arise from memory leaks,

inefficient algorithms, and inferior performance.

Dynamic analysis techniques enable development teams

to identify specific sections of the code that require

runtime enhancements, thereby minimizing the

technical debt associated with performance and

stability.

Architectural Analysis Tools

Architectural analysis tools primarily assess the

architecture and structure of software systems. They

assist in identifying architectural challenges and

probable design faults that could contribute to the

accumulation of technical debt. These techniques assist

in preserving a resilient and expandable architecture

over a period of time.

Visualization Tools

Visualization tools aid developers in comprehending and

examining codebases, dependencies, and other

software-related structures by means of graphical

representations. These technologies frequently utilize

charts, diagrams, and graphs to effectively communicate

intricate information, hence enhancing its accessibility

for developers and stakeholders.

27

Automated Testing Tools

Automated testing tools facilitate the detection of areas

lacking sufficient or comprehensive test coverage. The

mentioned components encompass unit testing

frameworks, UI testing tools, and other testing suites.

The objective is to guarantee comprehensive test

coverage, minimizing the possibility of incurring

technical debt when making code modifications.

Dependency Analysis Tools

Dependency analysis tools assist teams in effectively

managing and comprehending the interdependencies

present within a codebase. They ascertain the

interdependencies among components, libraries, and

modules, resolving technical obligations associated with

obsolete or troublesome dependencies, thereby

assuring a more robust and sustainable system.

Security Analysis Tools

Security analysis tools are purposefully created to detect

and resolve security weaknesses in a codebase. Their

role involves conducting both static and dynamic

analysis to identify potential risks, assisting teams in

addressing technical debt related to security faults and

vulnerabilities.

Continuous Integration Tools

Continuous Integration tools automate the process of

regularly integrating code changes from multiple

contributors into a shared repository. They help ensure

that new code integrates smoothly with the existing

codebase and that automated tests are run to catch

potential issues early in the development lifecycle.

Repository and Project

Management Tools

Repository and project management tools help teams

collaborate, track changes, and organize their work.

They provide features such as version control, issue

tracking, project planning, and documentation, making

28

it easier for development teams to coordinate efforts

and manage the development lifecycle.

Documentation Tools

Documentation tools facilitate the creation,

organization, and upkeep of documentation for

codebases. These tools encompass features for

producing API documentation, code comments, and

comprehensive project documentation. Thorough

documentation mitigates knowledge transfer challenges

and tackles technical debt associated with

comprehending and maintaining code.

User Feedback and Bug Tracking

Tools

Tools in this category streamline the process of

gathering and organizing user feedback and issue

reports. These systems encompass problem tracking

capabilities that assist teams in prioritizing and resolving

reported issues. By rapidly addressing problems raised

by users, these technologies help to reduce

technological debt associated with user experience and

system stability.

Table 3: Main Categories and Definitions of Technical Debt Tools

4.1.2. Main Evaluation Criteria for TD Tools

Choosing the appropriate tools for your software development process is essential for the

successful completion of a project. After reviewing academic studies conducted by Lenarduzzi,

V., et al. (2021) and Pavlič, L., et al. (2019) and some popular websites mentioned in the

previous section, it is important to consider the following primary factors given in Table 4 to

compare tools in different categories.

29

Criteria Definition

Functionality

Does the tool respond to the particular requirements of

your team and project? Make sure that it offers

extensive capability in the key areas of your

development process, including code quality, testing,

monitoring, documentation, visualization, and project

management.

Ease of Use

Does the tool's user interface include an intuitive and

user-friendly design? An intuitively navigable and user-

friendly tool can enhance the adoption and efficiency of

team members.

Integration Capabilities

Compatibility: Does the product have the capability to

smoothly incorporate into your current development

ecosystem, encompassing version control systems, issue

tracking, and continuous integration pipelines?

API Support: Does the application have APIs or

connectors that enable customization and integration

with other technologies utilized by your team?

Customization Options

Configurability: Is it possible to tailor the tool to conform

to your team's procedures and coding standards?

Scalability: Does the tool exhibit efficient scalability as

the complexity and size of your project increase?

Scalability and Performance

Performance: What is the tool's performance in terms of

speed and responsiveness, particularly when dealing

with larger codebases and projects?

Resource Requirements: Take into account the resource

demands of the tool, encompassing memory utilization

and computational capacity.

Community and Support
Community Engagement: Does the tool have a vibrant

and engaged community? An active community

30

frequently entails enhanced assistance, regular updates,

and an abundance of resources.

Support Options: What amount of assistance does the

tool's seller or community provide? Take into account

variables such as manuals, forums, and customer service

channels.

Cost and Licensing

Licensing Model: Comprehend the licensing framework

of the tool. Make sure it conforms to your financial

constraints and project specifications.

Total Cost of Ownership: Take into account the total

expenditure, encompassing licensing fees, maintenance

costs, and any training expenditures.

Security and Compliance

Security Features: Does the tool have robust security

features to protect sensitive data and code repositories?

Compliance: Ensure the tool complies with relevant

industry standards and regulations if applicable.

Flexibility and Extensibility

Plugin Ecosystem: Does the tool have the capability to

accommodate plugins or extensions? This can improve

its functionality and flexibility to meet changing

requirements.

Customization Capabilities: Assess the tool's capacity to

be tailored and expanded to meet specific project needs.

Table 4: Main Criteria and Definitions for Evaluating Technical Debt Tools

31

4.2. TD Tools in Code Quality, Static Code and Security Analysis Category

Static code analysis, sometimes referred to as Static Application Security Testing (SAST),

involves the examination of computer program without executing the software. Developers

employ static code analysis tools to identify and rectify vulnerabilities, defects, and security

issues in their newly developed applications during the static phase of the source code, which

refers to the period when it is not being executed.

According to the literature reviews and some popular blogs such as “forrester”, “medium”,

“trustradius”, “softwareadvice”, “peerspot”, “stackoverflow”, “gartner” “thectoclub” and

“comparitech” etc. some popular tools for code quality and static code analysis can be seen in

Table 5.

Tool Name Brief Definition

SonarQube
A platform for continuous inspection of code quality that detects

bugs, security vulnerabilities, and code smells.

Checkmarx
A static application security testing (SAST) tool that identifies security

vulnerabilities in the source code.

Synopsys Coverity

Synopsys Coverity is a static code analysis tool designed to assist

DevOps teams in promptly identifying and resolving security

vulnerabilities during the software development process. The system

provides both cloud-based and on-premise deployment alternatives.

ReSharper

ReSharper is a plugin designed for Visual Studio, which is an

integrated development environment (IDE) used for the Microsoft

.NET Platform. The tool is capable of conducting code quality analysis

for programming languages such as VB.NET, JavaScript, HTML, CSS,

and XML.

CAST

CAST Highlight is a software intelligence platform capable of analyzing

the source code of numerous applications. The software produces

informative dashboards with color-coded visuals that offer quick and

comprehensive insights into your applications.

CodeClimate
Code Climate Quality is a software application that does code analysis

to assist development teams in delivering higher quality code. The

32

tool offers static analysis capabilities for programming languages such

as PHP, Java, JavaScript, Python, and Ruby.

Snyk Code

Snyk is a developer security platform that provides immediate

scanning and analysis for your code. Additionally, it provides git

repository integration, enabling you to prioritize bugs across all of

your projects.

Micro Focus Fortify

Static Code

Analyzer (SCA)

The tool does static code analysis to identify the underlying causes of

vulnerabilities, categorizes issues based on their severity, and offers

comprehensive remediation guides. Additionally, it has dynamic

application testing and source code analysis capabilities.

Codacy

Another exceptional option within the realm of static analysis tools

that assists in evaluating the quality of our code. It obstructs the

merging of pull requests that do not meet your quality standards and

aids in averting significant problems from impacting your product.

PVS Studio

PVS Studio is well known for its proficiency in identifying software

defects and vulnerabilities. It provides a digital compendium of

analytic rules and analysis codes for errors, dead snippets, typos, and

repetition.

Table 5: TD Tools for Code Quality and Static Code Analysis

4.3. Evaluation of TD Tools in Code Quality and Static Code Analysis Category

According to the literature reviews about the tools given at Table 5 and approximately 100

reviews written by users; main features, strong and weak points of these tools are given in

Table 6.

Tool Name Evaluation Results

SonarQube

[33]

Pros:

 It is an open-source platform

 It can be self-hosted or deployed to the cloud

 The Community Edition is highly comprehensive, encompassing security

analysis and bug detection, making it particularly well-suited for

development environments

33

 Supports over 30+ programming languages, including Java, Ruby, and C

 Offers integrations with popular DevOps platforms

 Performs continuous code inspections

 The system has the ability to classify each infraction according to its

severity, ranging from minor to significant, and also provides an estimate

of the required time to address the issue

 Users can create “quality gates” to control that new code must exceed this

gate value

Cons:

 May produce false positives

 Free version has limited functionality

OS: Docker over Windows, macOS, Linux, and Azure

Pricing: SonarQube is priced per instance per year and based on your lines of code.

The price starts:

 For developer $150 /year/100K LOC

 For developer $20000 /year/1M LOC

Trial: 14-day free trial

Official Sites: https://www.sonarsource.com/

Checkmarx

[44]

Pros:

 Its product is an enterprise-grade, flexible, and accurate static analysis tool

 Best Fix Location: This capability enables you to pinpoint the optimal

location for fixing a single line of code and address numerous issues

simultaneously

 Tailored App Protection: With over 40 presets and the ability to create

custom queries, you may tailor SAST to suit the specific requirements of

every application and business objective

 AI Query Builder: AI Query Builder generates new, and customizes existing,

queries to better tailor searche

 Checkmarx SAST is an integral component of an automated testing platform

that also encompasses dynamic testing techniques, allowing for their

seamless integration. The tool can be integrated with code repositories and

bug trackers, allowing the tester to be automatically launched as part of the

code submission process

https://www.sonarsource.com/

34

 Checkmarx SAST conducts static application security testing (SAST) scans

immediately upon code check-in, directly from source code repositories

such as GitHub, GitLab, Azure, and Bitbucket. This enables seamless

integration into your software development life cycle (SDLC)

 Checkmarx SAST is compatible with more than 50 programming languages

and 80 language frameworks. It can handle both the latest and older

languages, making it suitable for multi-platform development

Cons:

 No free trial version

 No price information

Official Sites: https://checkmarx.com/?

** Checkmarx is a cloud-based SaaS package, so, those who want a hosted

application testing package instead of one that needs to be self-managed would

prefer Checkmarx over SonarQube.

Synopsys

Coverity [45]

Pros:

 Real-time detection helps deal with errors quickly

 Able to scan lines of code quicker than other tools

 Provides detailed reports

 The Code Sight IDE plugin enables developers to identify and rectify security

or quality concerns in real-time while writing their code

 The system demonstrates exceptional precision in detecting vulnerabilities

like as buffer overflows, input validation issues, and memory leaks

Cons:

 Complicated to integrate with other tools

 User interface is difficult to navigate

 No price information

Pricing: Pricing upon request

Trial: Trial license available

Official Sites: https://www.synopsys.com/

** Synopsys is primarily designed for utilization inside the development aspect of

DevOps, rather than being utilized by operations teams. This program rivals the self-

hosted SonarQube as it is compatible with Windows, macOS, and Linux operating

https://checkmarx.com/
https://www.synopsys.com/

35

systems for installation. In addition, it rivals Checkmarx as it offers subscription-

based services through the Synopsys SaaS platform.

ReSharper

[31]

Pros:

 Offers tight integration with Visual Studio

 Has extensive documentation to help you learn the tool

 Provides a helpful auto-complete list that appears as you code

 It provides a comprehensive range of refactoring capabilities that allow you

to modify your code base securely

 It promptly identifies coding problems and includes more than a thousand

immediate solutions. To rectify any highlighted issue, simply hit the

"Alt+Enter" key combination

Cons:

 Requires a paid license to use

 Large code base can slow down Visual Studio

Pricing: From $349.0/user/year

Trial: 30-day free trial

Official Sites: https://www.jetbrains.com/resharper/

CAST

[46]

Pros:

 Best for performing software assessments at scale

 Offers cloud migration suggestions

 Supports over 40 programming languages

 It produces informative dashboards with color-coded visuals, allowing you

quick and comprehensive insights into your applications

 The tool performs local code scans and never uploads your code to the

cloud

 Integrations are available natively for GitHub, Bitbucket, and Azure DevOps.

You can also use CAST Highlight’s public REST API to extract and integrate

key metrics into other systems

Cons:

 Requires a paid license to use

 Large code base can slow down Visual Studio

Pricing: Single App/1 Application On boarded/$6,000/Year

https://www.jetbrains.com/resharper/

36

Trial: 30-day free trial

Official Sites: https://www.castsoftware.com/

CodeClimate

[31]

Pros:

 Suitable for GitHub users, it offers two-factor authentication with GitHub

OAuth

 Provides static analysis for languages like PHP, Java, JavaScript, Python, and

Ruby

 It also provides a concise summary of any problems with a pull request prior

to merging it into the primary repository. The GitHub browser add-on is

useful for presenting test coverage data on a line-by-line basis

 Provides visual progress reports with a simple grading system

 The tool also integrates natively with ticket and messaging systems like

Asana, Trello, and Slack

Cons:

 May generate false positives

 Free plan has limited functionality

Pricing: From $16.67 per month Trial: Free for open-source projects

Official Sites: https://codeclimate.com/

Snyk Code

Pros:

 Developer security platform that offers real-time scanning and analysis

 It also offers GIT repository integration

 It’s DeepCode AI tool pulls up a list of quick fixes as it identifies issues

 It assigns a risk score to each issue, enabling you to prioritize them

 Easy to integrate and setup

 Snyk is the ideal tool for businesses and developers who prefer the cloud

computing environment - it can find and fix vulnerabilities in code,

containers, Kubernetes, and Terraform

 Integrations are available natively for CI/CD tools like Jenkins, Azure

Pipelines, and Bitbucket Pipelines. There are also plugins for IDE tools like

Eclipse, PhpStorm, and Visual Studio

 Snyk provides actionable fix advice in your tools. With auto PRs

https://www.castsoftware.com/
https://codeclimate.com/

37

Cons:

 Slower scan times

 No self-hosted option

 Free plan limited to 100 tests per month

Pricing: Starting at $25 per month/product

Trial: Free plan available

Official Sites: https://snyk.io/

Micro Focus

Fortify Static

Code

Analyzer

(SCA)

Pros:

 The user interface is intuitive, and the dashboard is valuable for monitoring

any identified issues.

 Offers compatibility with many programming languages and frameworks

 Wide variety of integrations accessible

 This tool offers dynamic (DAST) application testing as well as source code

analysis (SAST).

 It can be integrated into IDEs like Eclipse or Visual Studio

 The tool offers unlimited flexibility with its multiple deployment modes

Fortify SAST offers options for on-premises, SaaS, or hybrid methods

Cons:

 Can be difficult to set up initially

 Not able to deal with false positive detection well

Pricing: Pricing upon request

Trial: No free trial

Official Sites: https://www.microfocus.com/

Codacy

Pros:

 Best for continuous integration (CI) workflows

 The platform supports over 40 programming languages and frameworks

 Integrating Codacy with GitHub allows to get instant feedback on code

 It helps standardize code quality by automatically blocking pull requests

that don’t meet certain standards

 Ability to set custom rule sets, also upload your own configuration file

 Adheres to SOC2 security standards

 Integrations are available natively with GitHub, GitLab, and Bitbucket

https://snyk.io/
https://www.microfocus.com/

38

 Native integrations are also available for Jira and Slack

Cons:

 Doesn’t integrate with Lombok, a Java library that reduces boilerplate code

 Not able to export code patterns

Pricing: Open-Source Edition $0 and PRO Edition $15 Per developer/month billed

annually or $18 billed monthly

Trial: 14-day free trial

Official Sites: https://www.codacy.com/

PVS Studio

Pros:

 Best for game developers

 PVS-Studio is a code analyzer that can detect bugs and security flaws in

source code written in C, C++, C#, and Java

 It offers direct integrations with Unity and Unreal Engine

 Integrations are available natively for over 30 platforms, including Visual

Studio, Maven, Jenkins, Docker, and Azure DevOps

 Integrates with bug tracking systems like GitHub Issue

 Offers extensive documentation

 Works on multiple operating systems, like Windows, macOS, and Linux

Cons:

 Only supports a small number of programming languages

 Can use up a lot of resources for large code bases

Pricing: Pricing upon request

Trial: 7-day free trial

Official Sites: https://pvs-studio.com/en/

Table 6: Evaluation of TD Tools for Code Quality and Static Code Analysis

4.4. TD Tools in Dynamic Analysis Category (DAST Tools)

Dynamic Application Security Testing (DAST) solutions employ simulated assaults or

penetration tests to detect real-time vulnerabilities in online applications that are currently

operational. They consistently analyze apps for potential vulnerabilities that could be

exploited by cybercriminals through attacks like as SQL injection, Cross-Site Scripting (XSS),

and Cross-Site Request Forgery (CSRF), among other methods. After identifying a vulnerability,

https://www.codacy.com/
https://pvs-studio.com/en/

39

the DAST tool promptly notifies the development team, enabling them to promptly address

and resolve the issue.

According to the literature reviews and popular blogs searched in this study, some popular

tools for dynamic analysis can be seen in Table 7.

Tool Name Brief Definition

Intruder

Intruder is a cloud-native vulnerability management software

that facilitates security monitoring, risk assessment,

configuration mapping, and bug detection.

SOOS DAST

SOOS DAST seamlessly integrates into the build workflow and

combines DAST test findings with SCA vulnerability checks in a

unified and robust online dashboard.

Invicti

Invicti, previously known as Netsparker, is an interactive

application security testing package (IAST) that incorporates

DAST procedures. The plans for this tool include features that

make it well-suited for usage as a vulnerability scanner, an

automated pen testing tool, and a continuous testing system.

Table 7: TD Tools for Dynamic Analysis

4.5. Evaluation of TD Tools in Dynamic Analysis Category

According to the literature reviews about the tools given at Table 7 and approximately 80

reviews written by users; main features, strong and weak points of these tools are given in

Table 8.

Tool Name Evaluation Results

Intruder [41]

Intruder is an automated and dynamic vulnerability management

solution that operates in the cloud. It effortlessly conducts scans

on infrastructure, online applications, and APIs. It provides

practical and situation-specific outcomes, allowing users to

prioritize the most crucial security concerns initially. Intruder

offers continuous protection by conducting regular vulnerability

40

checks and actively monitoring for emerging threats, effectively

minimizing the potential for attacks on the system.

Pros:

 Integration with development project tools

 ServiceNow integration for operations support

 Attack surface management

 Its testing services are priced per instance, no need to pay for

that are not used

 Integrates with code repositories

 An easy-to-use Web-based console

 Risk scoring

 Continuous scanning made simple. Proactive protection from

emerging dangers. Business context is used to prioritize

intelligent results

Cons:

 Price

 DAST is not part of the core package of any edition

Pricing:

 14 day free trial is available

 Essential version $157 for one app/per month

 Pro version $221 for one app/per month

 Premium version $3633 for one app/per year

Official Sites: https://www.intruder.io/

SOOS DAST [42]

SOOS is a self-governing software security firm situated in

Winooski, VT USA. We specialize in developing security software

specifically designed for your team. SOOS: Streamlined approach

to software security. Utilize the SOOS Core SCA tool to do a

thorough examination of your software, identifying any

vulnerabilities and potential open source license complications.

Pros:

 HTML App DAST Tests & Single Page App DAST Tests

https://www.intruder.io/

41

 REST API & SOAP Testing & GraphQL Testing

 Open Source License Management

 Script Configurations & Easy Setup

 Role-Based Dashboard for Engineering/Legal/Security Viewers

Cons:

 Learning curve and price

Pricing:

 Free trial is available

 $100 for 5 developers / per month

Official Sites: https://soos.io/

Invicti [43]

Intruder is an automated and dynamic vulnerability management

solution that operates in the cloud. It effortlessly conducts scans

on infrastructure, online applications, and APIs. It provides

practical and situation-specific outcomes, allowing users to

prioritize the most crucial security concerns initially. Intruder

offers continuous protection by conducting regular vulnerability

checks and actively monitoring for emerging threats, effectively

minimizing the potential for attacks on the system.

Pros:

 Users can use this system on-demand or on a schedule to check

the security of live systems or set it up within CI/CD pipeline

framework as a continuous tester. This is an IAST system, but it

implements DAST procedures as well.

 Cloud-based or on-premises

 Continuous testing

 Vulnerability scanning option

 Suitable for development testing

 Installs on Windows and Windows Server

 Highly visual interface

Cons:

 It is an advanced security tool for professionals, not ideal for

home users

https://soos.io/

42

Pricing:

 Trial version is available

 Premium and enterprise edition no price info

Official Sites: https://www.invicti.com/

Table 8: Evaluation of TD Tools for Dynamic Analysis

4.6. TD Tools in Architectural and Dependency Analysis Category

Architectural analysis tools are specialized software tools created to aid in the assessment,

design, and enhancement of the structure of a software system. These tools offer valuable

insights into several facets of the system's architecture, enabling developers and architects to

make well-informed decisions on design, performance, and maintainability.

According to the literature reviews and popular blogs searched in this study, some popular

tools for architectural and dependency analysis can be seen in Table 9 [28].

Tool Name Brief Definition

Structure101

Structure101 offers graphical depictions of codebases, aiding

teams in comprehending and overseeing intricate software

architectures. It provides a visual representation of

interdependencies, ensures compliance with architectural

guidelines, and highlights potential areas for enhancement.

Sonargraph

Sonargraph is a software application that provides architectural

visualization, analytics, and dependency analysis for managing

software architecture and quality. It facilitates the identification

and resolution of issues pertaining to the code's structure and

design.

JArchitect

JArchitect is a Java static analysis tool that offers valuable

information on code quality, design, and architecture. The tool

provides visual representations, quantifiable measurements, and

trend evaluations to assist teams in upholding a robust codebase.

SonarQube

(Architecture Plugin)

SonarQube, renowned for its static code analysis capabilities,

also provides architecture analysis through the use of plugins. It

https://www.invicti.com/

43

offers visual representations and measurements to evaluate the

condition of the codebase and compliance with architectural

principles.

NDepend

NDepend is a software tool that performs static analysis on

programs built using the .NET framework. It provides valuable

information on the quality, design, and structure of code,

assisting teams in visualizing interdependencies, identifying

problematic code patterns, and effectively managing technical

debt.

Table 9: TD Tools for Architectural Analysis

4.7. Evaluation of TD Tools in Architectural and Dependency Analysis Category

According to the literature reviews about the tools given at Table 9 and approximately 150

reviews written by users; main features, strong and weak points of these tools are given in

Table 10.

Tool Name Brief Definition

Structure101 [39]

Structure101 is utilized to visually represent the architecture of

an application using a graph that displays the relationships

between modules, packages, and classes, or by a presentation of

a dependency matrix. Additionally, it is beneficial to construct the

architecture diagram while incorporating support for violation

checks. This allows for the identification of tangles, fat packages,

classes, and methods inside the code-base.

Pros:

 Simulate Restructuring

 Create Task-Specific Views: Tag the dependencies of an item,

isolate the tagged items (filtering), hide packaging (slicing),

expand all to show a complete call graph, isolate further for

paths between 2 items, show results with packaging or

without.

 Organize Modules Into Groups

44

 Constrain Module Dependencies

 Create Dependency Validation Diagrams

 Use Model Views To Analyze Structure

 See How Structure Changes Over Time

 Available for C/C++, Java, .Net, & more

Cons:

 Learning curve

 Price

Pricing: starts from $349.00 per user/year

Official Sites: https://structure101.com/

Sonargraph-Architect

[33]

Sonargraph-Architect calculates several code and quality metrics

that can be utilized to promptly evaluate the technical quality of

any software system.

Pros:

 It supports C#, C/C++, Java/Kotlin and Python 3

 The software offers robust visualization views, numerous

metrics, automated architecture checks using a powerful DSL,

a Groovy-based scripting engine, a duplicate code checker,

virtual refactorings, an issue resolution workflow, advanced

metrics such as LCOM4, and a computer for breaking up cyclic

dependencies

 Users can define quality gates based many different criteria

and these gates can be configured to break the build if things

got worse in comparison to the baseline

 Sonargraph has very powerful dependency visualization

features

 Design architecture using Sonargraph's Architecture DSL

 Virtual Refactorings allow the Simulation of Refactorings

without touching the Code

 Break up cyclic dependencies with minimal Effort

 Create Your Own Code Checkers

Cons:

 Price

https://structure101.com/

45

 Learning curve

Pricing:

 14 day free trial is avaliable

 Pricing changes over license type ex: Java $360.00 per/month

Official Sites: https://www.hello2morrow.com/products/sonargraph

JArchitect [40]

JArchitect is a prominent tool in the field of static code analysis

for Java. It stands out for its ability to visually represent the

architecture of Java code. Complexity in programming projects

manifests as an organized and graphical representation,

highlighting intricacies in the source code.

Pros:

 Proficient at representing intricate Java code structures.

 Offers invaluable insights into technical debt and code smells.

 Excellent integration capabilities, especially with GitHub and

Jenkins.

 Smart Technical-Debt Estimation, Fast Estimation,

Customizable

 Detect Dependency Cycle

 Lots of default Quality Gates are proposed by JArchitect

 Within seconds, users can determine the specific portion of the

code that will be affected by refactoring a class. Additionally,

users will receive notifications if there is an unintentional

violation of layer dependencies. Furthermore, users can

precisely identify the section of the code that relies on a

specific tier component, as well as generate a list of methods

that can be accessed from a given method

Cons:

 Some users might find the interface slightly daunting initially.

 Certain functionalities may appear redundant for basic

projects.

 Price

 Requires a fair bit of configuration for optimal results.

https://www.hello2morrow.com/products/sonargraph

46

Pricing:

 JArchitect for Developer $ 599 per user/year

 JArchitect DevOps License $ 3999 per user/year

Official Sites: https://www.jarchitect.com/

NDepend [38]

JArchitect is a prominent tool in the field of static code analysis

for Java. It stands out for its ability to visually represent the

architecture of Java code. Complexity in programming projects

manifests as an organized and graphical representation,

highlighting intricacies in the source code.

Pros:

 Code Rule and Code Query: There are numerous default code

standards that can be used to evaluate adherence to best

practices. Code Query over C# LINQ (CQLinq) is supported to

facilitate the customization of rules for code querying

 Powerful Dependency Graph and Matrix

 Smart Technical Debt Estimation

 Quality Gates: Quality Gates are C# LINQ (CQLinq) queries that

implement PASS/FAIL criteria to code quality

 In-Depth Issues Management

 Complexity and Diagrams: Identify intricate code with ease

using exceptional diagramming features

 Detect Dependency Cycles

 NDepend.API and Power Tools: Write your own static analyzer

based on NDepend.API, or tweak existing open-sources Power

Tools

Cons:

 For .NET projects

 Price

Pricing:

 NDepend v2023.2.3 for Developer $ 492 per user/year

 Free trial is available

Official Sites: https://www.ndepend.com/

Table 10: Evaluation of TD Tools for Architectural and Dependency Analysis

https://www.jarchitect.com/
https://www.ndepend.com/

47

4.8. TD Tools in Automated Testing Category

Automated testing solutions facilitate the reduction of testing durations, augmentation of test

scope and speed of execution, and guarantee the efficient utilization of test cases with

minimal human involvement.

According to the literature reviews and popular blogs searched in this study, some popular

tools for automated testing can be seen in Table 11.

Tool Name Brief Definition

LambdaTest

LambdaTest offers cloud-based automated testing services. The

cloud solution enables teams to expand their test coverage by

conducting rapid parallel testing across several browsers and

devices.

Selenium

Selenium is a freely available framework used for automating

web browsers. It is extensively employed to test web applications

by imitating user activities, aiding in verifying the functionality

and efficiency of web-based systems.

TestComplete

TestComplete is a paid automated testing solution that provides

support for several forms of testing, such as functional,

regression, and UI testing. It offers assistance for conducting

application testing on many platforms and in varied scenarios.

Appium

Appium is a freely available framework for automating mobile

applications on both iOS and Android platforms. It is widely

favored for mobile testing due to its compatibility with native,

hybrid, and mobile web applications.

Cypress

Cypress is a JavaScript framework for doing end-to-end testing. It

offers a testing environment that is efficient, dependable, and

user-friendly. Its purpose is to streamline the process of testing

web applications.

Table 11: TD Tools for Automated Testing

48

4.9. Evaluation of TD Tools in Automated Testing Category

According to the literature reviews about the tools given at Table 11 and approximately 50

reviews written by users; main features, strong and weak points of these tools are given in

Table 12.

Tool Name Brief Definition

LambdaTest [36]

The LambdaTest framework guarantees extensive browser

coverage through its cross-platform interoperability with over 40

browsers, ensuring reliable and accurate results regardless of the

operating system being used. The platform can be utilized with

virtual devices hosted on the cloud or emulators deployed locally.

Pros:

 It allows to test web applications across a wide range of

browsers and operating systems.

 It grants users access to real web browsers operating on actual

machines, hence providing a more precise testing

environment.

 The platform supports parallel testing that speeds up test

execution.

 LambdaTest integrates with popular testing frameworks and

CI/CD tools.

 It provides AI-powered test analytics and smart TV testing

 It provides responsive testing to ensure applications work well

on various devices and screen sizes.

Cons:

 New users of the platform may encounter a period of

adjustment when it comes to establishing and customizing

tests

 Some configurations may be time-consuming

 Some users may perceive that its analytics and reporting lack

sufficient detail or customization options

Pricing: From $15/month Trial: Free trial available

Official Sites: https://www.lambdatest.com/

https://www.lambdatest.com/

49

Selenium [29]

Selenium is a dependable option for test automation, well

regarded for its open-source characteristics. Through thorough

testing and analysis, it is evident that Selenium is intricately

crafted for the purpose of automating web browsers.

Pros:

 Runs tests across different browsers

 Supports various operating systems

 Executes tests while the browser is minimized

 It is free

 It allows testing across multiple web browsers

 Supports Windows, macOS, and Linux, enabling cross-platform

testing

 Provides support for multiple programming languages

 Extensive user community, resulting in a wealth of online

resources, lessons, and community assistance

 It provides flexibility in scripting and is capable of managing

intricate testing scenarios

 Allows for parallel test execution

 Integrates with various testing frameworks and continuous

integration tools like Jenkins

Cons:

 Selenium scripts may require frequent updates, especially

when web application UI changes

 Limited Support for Non-Web Applications not suitable for

automating desktop or mobile applications

 Selenium's speed can be relatively slower compared to some

commercial automated testing tools

 Setting up and managing parallel testing environments can be

complex and require additional configurations

 May struggle with handling dynamic elements

Official Sites: https://www.selenium.dev/

https://www.selenium.dev/

50

TestComplete [32]

TestComplete is a graphical user interface (GUI) test automation

tool provided by Smartbear. It is designed to support a diverse

variety of applications, such as desktop, web, and mobile, and can

be used by anyone with different levels of technical knowledge.

Pros:

 supports testing for various types of applications, including

desktop, web, and mobile

 Powerful Cloud-Based Testing

 Superior Object Recognition

 Enterprise Application Support: compatible with testing

enterprise-level applications such as SAP, Oracle EBS, and

Salesforce

 Allows for the execution of functional UI tests in parallel

 Integrates with other tools in the software development

ecosystem, including CI/CD pipelines, test management

systems, issue tracking, and version control

Cons:

 Although the interface is designed to be easy to use, there may

still be a period of time required to learn how to use more

advanced features and scripting

 TestComplete necessitates continuous maintenance to ensure

that test scripts remain current with any modifications made to

the application.

 TestComplete primarily targets Windows environments

 The cost of TestComplete may be a consideration for smaller

organizations or individual users

Pricing:

 trial version is available

 TestComplete Base - Starting at €3,253

 TestComplete Pro - €5,045

Official Sites: https://smartbear.com/product/testcomplete/

https://smartbear.com/product/testcomplete/

51

Appium [32]

Unlike other software testing approaches, Appium focuses on

automating UI tests. This allows testers to write code that directly

interacts with the application's user interface, following certain

user scenarios.

Pros:

 Mobile-focused test automation features

 Remote testing capabilities for large, distributed teams

 Customizable insight generation

 Appium offers cross-platform compatibility, allowing for the

automation of mobile applications on several platforms such as

Android and iOS using a unified codebase. This minimizes the

time and exertion required to create distinct test scripts for

each platform.

 Extensive Language Compatibility: Appium offers support for a

wide range of programming languages such as Java, Python,

Ruby, JavaScript, and others, enabling testers to utilize their

choice scripting language.

 Appium allows for testing on both physical devices and virtual

emulators/simulators, offering versatility in the testing

environment.

Cons:

 Complex Setup

 Slower Execution

 Limited Built-In Reporting

 Steep Learning Curve

Pricing:

 Free and open-source

Official Sites: https://appium.io/docs/en/2.3/

Cypress [37]

Cypress specializes in comprehensive testing, particularly for

applications that utilize contemporary JavaScript frameworks.

Cypress is highly compatible with projects developed using

contemporary frameworks such as Vue, Angular, and React.

https://appium.io/docs/en/2.3/

52

Pros:

 Real-time execution of commands with visual feedback

 Automatically wait for assertions and commands

 Captures screenshots during test execution

 Simple installation process. It requires no complex setup or

additional dependencies

 Real-Time Support: Test can be written while the application is

being built, allowing for immediate feedback and agile testing

 Instant Test Execution

 Comprehensive Test Snapshots: simplifies the debugging

process by providing test snapshots right from the command

log

 Documentation, Useful JavaScript Tools

Cons:

 Limited Browser Compatibility

 Lack of Support for Iframes

 Learning Curve

Pricing:

 Cypress offers a free package with three users and 500 test

results, as well as three paid packages for teams, businesses,

and enterprises.

Official Sites: https://www.cypress.io/

Table 12: Evaluation of TD Tools for Automated Testing

4.10. TD Tools in Continuous Integration Category

Continuous Integration (CI) is a software development approach that involves the frequent

and automated integration of code changes into a shared repository. The main objective of

Continuous Integration (CI) is to identify and resolve integration problems at an early stage in

the development process, resulting in a more efficient and smooth development workflow.

According to the literature reviews and popular blogs searched in this study, some popular

tools for continuous integration can be seen in Table 13 [27].

https://www.cypress.io/

53

Tool Name Brief Definition

Jenkins

Jenkins is a freely available automation server that provides

support for the construction, deployment, and automation of

various projects. It has a high degree of extensibility through the

use of plugins and is commonly employed for the implementation

of continuous integration and continuous delivery (CI/CD)

pipelines.

GitLab CI/CD

GitLab CI/CD is an intrinsic component of the GitLab platform,

offering an embedded CI/CD system. Developers can define, test,

and automate the construction and deployment of their projects

right within the GitLab environment.

Travis CI

Travis CI is a cloud-based Continuous Integration (CI) solution

that seamlessly connects with repositories hosted on GitHub. It

autonomously constructs and evaluates modifications to the

code, aiding developers in promptly detecting problems

throughout the development phase.

CircleCI

CircleCI is a cloud-hosted Continuous Integration/Continuous

Deployment (CI/CD) technology that streamlines the software

development process. The platform facilitates the construction,

evaluation, and implementation of apps and seamlessly

interfaces with widely used version control systems like GitHub

and Bitbucket.

AWS CodePipeline

AWS CodePipeline is an entirely supervised service for

continuous integration and continuous delivery (CI/CD) offered

by Amazon Web Services (AWS). Although AWS CodePipeline

may not consistently appear in compilations of the most popular

CI/CD technologies, it is a notable and extensively utilized service

inside the AWS ecosystem. The popularity of this service among

enterprises utilizing AWS infrastructure is due to its smooth

interoperability with multiple deployment scenarios and its

interaction with other AWS services.

Table 13: TD Tools for Continuous Integration

54

4.11. Evaluation of TD Tools in Continuous Integration Category

According to the literature reviews about the tools given at Table-12 and approximately 70

reviews written by users; main features, strong and weak points of these tools are given in

Table 14.

Tool Name Brief Definition

Jenkins [34]

Jenkins is a freely available automation server that serves as the

central hub for executing build and continuous integration tasks.

The program is written in Java and includes packages for

Windows, macOS, and Unix-like operating systems. Jenkins has

extensive plugin support, enabling the creation, deploying, and

automation of software development projects.

Pros:

 High customizability and flexibility, making it suitable for

diverse project needs.

 Active community support and continuous development

ensure its continued improvement.

 Suitable for small- and large-scale projects due to its

distributed build capabilities.

 Best for customizable build pipelines

Cons:

 For novices, Jenkins might pose a more challenging learning

experience, particularly when navigating intricate setups and

plugins.

 Requires careful management and can be resource-intensive
on larger projects

Pricing: Free

Official Sites: https://www.jenkins.io/

GitLab is a comprehensive set of tools designed to effectively

manage various areas of the software development lifecycle.

Users can initiate builds, execute tests, and deploy code with

every revision or push. Furthermore, customers have the

https://www.jenkins.io/

55

GitLab CI/CD [27]

capability to construct jobs within a virtual machine, Docker

container, or on an alternative server.

Pros:

 Access, generate, and oversee codes and project data using

branching tools

 Utilize a centralized distributed version control system to

efficiently create, enhance, and oversee codes and project

data, facilitating quick iteration and delivery of business values.

 Offers a centralized and expandable platform for collaborating

on projects and code, ensuring accuracy and scalability.

 Facilitates the complete adoption of Continuous Integration

(CI) by automating the processes of building, integrating, and

verifying source codes for delivery teams.

 Offers container scanning, static application security testing

(SAST), dynamic application security testing (DAST), and

dependency scanning to ensure the development of safe

applications while also ensuring compliance with licensing

requirements.

 Facilitates the automation and streamlining of application

releases and delivery.

Cons:

 For novices, Jenkins might pose a more challenging learning

experience, particularly when navigating intricate setups and

plugins.

 Requires careful management and can be resource-intensive
on larger projects

Pricing: Free

Official Sites: https://about.gitlab.com/

Travis CI is a cloud-based tool for continuous integration that

smoothly interacts with repositories on GitHub. It initiates builds

and tests automatically when there are changes in the code, pull

requests, or other events.

Pros:

https://about.gitlab.com/

56

Travis CI [27]

 Developers may rapidly enable continuous integration (CI) for

their applications by utilizing the straightforward setup and

configuration options provided by YAML files.

 Rapid and uncomplicated installation conserves time and

diminishes intricacy.

 The provision of a free tier specifically for open-source projects

serves to foster and promote community participation and

cooperation.

 Comprehensive documentation guarantees that customers

may effortlessly locate resources and receive assistance.

 Seamlessly incorporated with GitHub, automatically initiating

builds and tests whenever there are modifications to the code

or pull requests. This integration simplifies the continuous

integration process for projects hosted on GitHub.

 Rapid and effortless configuration for repositories hosted on

GitHub. Developers may easily setup Travis CI for their projects

with little configuration.

 Enables matrix builds, enabling developers to do identical

builds on many configurations and settings, facilitating

compatibility testing across diverse setups.

Cons:

 The free tier imposes restrictions on concurrency and build

minutes, rendering it unsuitable for bigger or resource-

intensive projects

 Full functionality of private repositories may necessitate

upgrading to a subscription plan due to the limited support

provided in the free tier

Pricing:

 Travis CI Enterprise Pricing - $34 Per User/Month

 Open-source projects may be applied at no charge on travis-

ci.org

Official Sites: https://www.travis-ci.com/

https://www.travis-ci.com/

57

CircleCI [27]

CircleCI is a Continuous Integration (CI) solution that seamlessly

integrates with Github, a widely used cloud hosting platform for

version control systems. CircleCi is highly versatile as it can

accommodate a wide range of version control systems, container

systems, and delivery techniques. CircleCi can be deployed on-

premise or accessed via a cloud-based service.

Pros:

 Notification triggers from CI events

 Performance optimized for quick builds

 Easy debugging through SSH and local builds

 Analytics to measure build performance

 Wide array of integrations with popular tools and platforms

 Support for Docker and parallel execution

Cons:

 May require some learning curve for newcomers

 Configuration might be complex for some users

 Could be over-featured for very small or simple projects

 The free tier has some limitations, such as fewer build

containers, which could affect the scalability of large projects.

 Cost can increase for resource-intensive builds or if higher

concurrency is required.

Pricing:

 CircleCI's pricing starts from $15/user/month.

Official Sites: https://www.travis-ci.com/

AWS CodePipeline [35]

Amazon Web Services is a highly influential provider of cloud

infrastructure in the market. They provide tools and services for

various infrastructure and code development needs.

CodePipeline is the Continuous Integration (CI) Tool provided by

the company. CodePipeline has the capability to immediately

integrate with various pre-existing AWS technologies, ensuring a

smooth and uninterrupted AWS user experience.

https://www.travis-ci.com/

58

Pros:

 Fully cloud

 Integrated with Amazon Web services

 Custom plugin support

 Robust access control

 Enables developers to specify personalized pipeline stages and

actions. This adaptability allows for the development of

advanced CI/CD procedures customized to meet unique

project needs.

 Enables immediate monitoring and notifications for pipeline

executions, facilitating the tracking of CI/CD process progress

and rapid response to any concerns



Cons:

 Advanced configurations and complex setups might require a

deeper understanding of AWS services and architecture.

 Cost may vary depending on the number of pipeline executions

and the services used in the CI/CD process.

Pricing:

 CircleCI's pricing starts from $15/user/month.

Official Sites: https://aws.amazon.com/codepipeline/

Table 14: Evaluation of TD Tools for Continuous Integration

4.12. TD Tools in Repository and Project Management Category

A repository, sometimes known as a repo, is a centralized storage facility designed for storing

and organizing all the information and resources related to a project. Any stakeholder or

developer involved in the project has the ability to retrieve the code or resources from your

repository in order to implement new features or correct bugs in the product or software

application.

According to the literature reviews and popular blogs searched in this study, some popular

tools for architectural and dependency analysis can be seen in Table 15.

https://aws.amazon.com/codepipeline/

59

Tool Name Brief Definition

GitHub

GitHub is an online platform that is constructed on the

foundation of Git. It provides hosting for Git repositories, as well

as features for collaboration and tools for managing projects. It is

extensively utilized for both open-source and private

development projects.

GitLab

GitLab is an online platform for managing Git repositories that

offers features such as source code management, continuous

integration/continuous deployment (CI/CD), and project

planning. The software comprises functionalities for code

evaluation, problem monitoring, and release administration.

Bitbucket

Bitbucket is a service provided by Atlassian that hosts Git

repositories. It offers source code management, collaboration

functionalities, and seamless connection with other Atlassian

products such as Jira for tracking issues.

AWS CodeCommit
It is a comprehensive and supervised platform that provides

hosting for GIT repositories, ensuring source control and security.

Jira

Jira, created by Atlassian, is a widely used software for managing

projects and monitoring issues. It is extensively utilized for agile

project management, enabling teams to quickly plan, track, and

manage their work.

Trello

Trello is a graphical application for managing projects that use

boards, lists, and cards to assist teams in arranging and ranking

their tasks. It is renowned for its straightforwardness and

adaptability in work management.

Asana

Asana is a platform for collaborative work management, enabling

teams to efficiently organize and monitor their tasks. The

software offers functionalities for project planning, task

administration, and collaborative work.

Table 15: TD Tools for Repository and Project Management

60

4.13. Evaluation of TD Tools in Repository and Project Management Category

According to the literature reviews about the tools given at Table 15 and approximately 100

reviews written by users; main features, strong and weak points of these tools are given in

Table 16.

Tool Name Brief Definition

GitHub

Pros:

 Best for collaborative development

 It allows developers to host, review, and manage code and

track and resolve issues

 It provides pull requests that facilitate the process of reviewing

and merging modifications. Users utilize forks to create a

duplicate of a repository in order to suggest modifications to

the original version, and have the ability to include other

GitHub users in the repository.

 GitHub pages to host a website for the project

 Built-in security features to secure code

 Automate tasks like testing, building, and deploying code

 The "gists" feature allows users to exchange concise fragments

of code or text with others.

 Project boards facilitate effortless organization and

prioritization of tasks. Additionally, users have the capability to

contribute documentation and material to the project using

wikis.

Cons:

 Built on top of Git, and users must know Git commands

 Issues with privacy and security in the past

OS: Docker over Windows, macOS, Linux, and Azure

Pricing: From $3.67/user/month (billed annually)

Trial: 30-day free trial + Free plan available

Official Sites: https://github.com/

https://github.com/

61

GitLab

Pros:

 Best reporting features

 It is an open-source code repository platform

 Supports DevOps and CI/CD pipelines

 Provides in-depth reports

 Code controls reduce accidental changes to the code base

 GitLab's Code Quality functionality facilitated the maintenance

of clean, consistent, and manageable code for users. The tool

performs code analysis after any modifications, including those

made in merge requests, and provides an assessment of how

the code quality has been affected prior to submitting the

changes to the main branch.

Cons:

 Limited integrations

 Complex UI

Pricing:

 Free version available

 Premium version $29 per user

 Ultimate version – no price info

Official Sites: https://about.gitlab.com/

Bitbucket

Pros:

 Best for version control

 Bitbucket is a robust Git solution that provides a platform that

is easy to use. Additionally, it offers seamless connection with

other Atlassian tools and robust features for team

communication and software development.

 This software is compatible with both Git and Mercurial version

management systems. Users can utilize branching and merging

capabilities to effectively handle codebase modifications and

uphold superior code quality.

 The free limitless private repositories facilitate collaborative

work without requiring costly enterprise-level solutions.

https://about.gitlab.com/

62

 Integrated CI/CD solution that allows you to build, test, and

deploy your applications automatically

 Unlimited pull requests reviewers

 Its access control, allowing administrators to manage team

member permissions on a per-repository basis.

 With Git-based version control, users can get a fault-resistant

distributed architecture that helps reduce single points of

failure and minimize downtime in the event of a disaster.

 Integrations are available natively for Jira, Trello, Slack,

Amazon CodeGuru, Bugsnag, Buddybuild, CircleCI, CloudBees,

and GuardRails.

Cons:

 Limited storage space for large files

 Does not support pull requests across forks in the free version

Pricing:

 Standard version $3 per user $15 monthly total

 Premium version $6 per user $30 monthly total

Trial: Free plan available

Official Sites: https://www.atlassian.com/software/bitbucket

AWS CodeCommit

Pros:

 It utilizes many AWS services that customers can employ for

code evaluations.

 Access to the code can be managed by users, time, and location

through the utilization of AWS Identity and Access

Management (IAM) and Key Management Service (KMS).

 Users can create repositories using their preferred manner,

whether it is through AWS SDKs, CLI, or the Management

Console. Users have the ability to closely monitor the

repositories in real-time using CloudTrail and CloudWatch.

 Easy to setup on AWS

 Native integrations for AWS products and services

 Robust user access control

https://www.atlassian.com/software/bitbucket

63

Cons:

 Limited non-AWS integrations

 Git functionality not as refined as alternatives like GitHub

Pricing:

 5 active users per month for free, $1.00 per additional active

user per month.

 Free plan available

Official Sites: https://aws.amazon.com/tr/codecommit/

Jira

Pros:

 Jira is a project management solution designed to facilitate

collaborative planning, tracking, and management of work for

teams.

 Jira is highly useful for tracking issues, since it allows users to

effortlessly generate issues, allocate tasks to team members,

and prioritize work according to its severity.

 It enables the monitoring of progress in real-time through the

use of customizable dashboards and reports.

 The platform offers agile tools such as Kanban and Scrum

boards for the purpose of visualizing progress.

 The software has a specialized query language called "JQL" that

allows users to sort and filter issues based on various

parameters. Additionally, there is a drag-and-drop

functionality available for constructing epics and sprints within

the backlog.

 Advanced search features

 Comprehensive activity log

 Issue templates available

 Integrations include native options like Balsamiq, Zendesk,

Zephyr, EazyBI, Salesforce Sales Cloud, Atlassian Confluence,

and nFeed.

Cons:

 Requires technical expertise to utilize advanced features fully

 Some users find the interface cluttered or overwhelming

https://aws.amazon.com/tr/codecommit/

64

Pricing:

 Standard version $8.15 per user $81.50 monthly total

 Premium version $16 per user $160 monthly total

 Enterprise edition – annually billed

Trial: Free plan available

Official Sites: https://www.atlassian.com/software/jira

Trello

Pros:

 Best for visual Kanban organization within small teams

 It is famous for its utilization of Kanban-style boards, lists, and

cards, which facilitate the organization of activities

 Simple, intuitive Kanban system

 Flexible and responsive to varied workflows

 Good collaboration features

 Integrations include Google Drive, Slack, Jira, GitHub, and

Dropbox natively, and can integrate with more tools via Zapier.

APIs include REST API, Webhooks API, and Power-Ups API

Cons:

 There are limited reporting tools compared to more

sophisticated platforms

 The dashboard can feel cluttered when projects become too

complex

Pricing:

 Free version is available

 Standard version $5 per user/month

 Premium version $10 per user/month

 Enterprise version – $17.50 per user/month

Official Sites: https://trello.com/

Asana

Pros:

 Asana is a widely used alternative to Jira. Designed to prioritize

visual task management and facilitate team coordination, this

tool is particularly well-suited for teams seeking efficient

project structure, monitoring, and management

https://www.atlassian.com/software/jira
https://trello.com/

65

 Highly-visual task management

 A range of collaboration features

 Free tier and affordable premium packages for small

companies

 Integrations include Slack, Google Workspace, Microsoft Office

365, Salesforce, and Adobe Creative Cloud. Plus, you can

integrate with more tools via Zapier. APIs include REST API,

Webhooks API, and Tasks API

 The software offers Kanban boards and Gantt charts to

facilitate project visualization.

Cons:

 Range of features can be overwhelming

 Advanced features are quite complex to use

Pricing:

 Free version is available

 Starter version $10.99 per user/month

 Advanced version $24.99 per user/month

 Enterprise versions – no price info

Official Sites: https://asana.com/

Table 16: Evaluation of TD Tools for Repository and Project Management

https://asana.com/

66

CHAPTER 5

CONCLUSION

The exploration of technical debt and related management techniques has shown the crucial

significance of tackling this widespread concern in software development. As emphasized in

this term project, technical debt manifests in different ways, ranging from design concessions

to postponed testing, each impacting the development process and the end result.

The assessment of various technologies specifically designed for managing technical debt has

yielded significant information for professionals traversing the intricate terrain of software

development. By conducting a meticulous examination of the advantages and disadvantages,

we have elucidated the positive and negative aspects of each tool, providing a nuanced

comprehension of their suitability in various scenarios. This project functions as a pragmatic

manual for development teams and decision-makers, empowering them to make well-

informed decisions that are customized to their specific project needs.

This study focuses on developing an understanding of technical debt and the tools used for

managing it. Through a literature review and analysis of popular blogs, we explore 30 different

tools that are commonly utilized across 6 distinct categories. After extensive review of

numerous academic papers and approximately 500 evaluations on reputable websites,

conducted by experts in the field, we have successfully determined the strengths, flaws, and

significant characteristics of each tool under examination.

Based on practical and technological research, no tool has been identified as the definitive

favorite, as none of the tools have proven to be the most successful in every element. The

factors to consider are outlined as the crucial elements that decide the choice of tool, which

varies between organizations and depending on the project's level of complexity and domain.

For example, in small-scale projects it would not be appropriate to use applications such as

"CAST" or "Micro Focus Fortify Static Code Analyzer", which have very comprehensive

features. For this reason, when choosing an application, factors such as the scale of the

company and the developed project and domain requirements should be taken into

consideration.

67

In addition, based on the software project development life cycle, the most important issue

that will affect the success of the project or cause serious costs later is architectural design.

For this reason, it is very important to develop software in accordance with coding standards

and SOLID principles during the software development process.

In conclusion, the findings presented here emphasize the necessity of a holistic approach to

technical debt. It is not merely a code quality concern but a crucial factor influencing the

overall success and sustainability of software projects. This paper aims to provide

organizations and users with a clear understanding of the concept of technical debt and the

ability to differentiate between various tools when managing the lifecycle of a software

project.

The work completed for this report can be expanded upon to discuss additional applications

and, given the wide range of applications, analyze in-depth the performance of appropriate

tools for a given need in projects of varying sizes. Additionally, the tools under the various

categories specified in this study can be thoroughly examined.

68

REFERENCES

[1] Verdecchia, R., Malavolta, I., & Lago, P. (2018, May). Architectural technical debt

identification: The research landscape. In Proceedings of the 2018 International Conference on

Technical Debt (pp. 11-20).

[2] Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., & Fontana, F. A. (2019). Technical debt

prioritization: State of the art. A systematic literature review. arXiv preprint arXiv:1904.12538.

[3] Behutiye, W. N., Rodríguez, P., Oivo, M., & Tosun, A. (2017). Analyzing the concept of

technical debt in the context of agile software development: A systematic literature

review. Information and Software Technology, 82, 139-158.

[4] Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt and

its management. Journal of Systems and Software, 101, 193-220.

[5] Avgeriou, P. C., Taibi, D., Ampatzoglou, A., Fontana, F. A., Besker, T., Chatzigeorgiou, A., ...

& Tsintzira, A. A. (2020). An overview and comparison of technical debt measurement

tools. Ieee software, 38(3), 61-71.

[6] Saraiva, D., Neto, J. G., Kulesza, U., Freitas, G., Reboucas, R., & Coelho, R. (2021). Technical

Debt Tools: A Systematic Mapping Study. ICEIS (2), 88-98.

[7] Stochel, M. G., Chołda, P., & Wawrowski, M. R. (2020, August). On coherence in technical

debt research: Awareness of the risks stemming from the metaphorical origin and relevant

remediation strategies. In 2020 46th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 367-375). IEEE.

[8] BenIdris, M. (2020). Investigate, identify and estimate the technical debt: a systematic

mapping study. Available at SSRN 3606172.

[9] Wiese, M., Riebisch, M., & Schwarze, J. (2021, May). Preventing Technical Debt by

Technical Debt Aware Project Management. In 2021 IEEE/ACM International Conference on

Technical Debt (TechDebt) (pp. 84-93). IEEE.

[10] Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., & Gorton, I. (2015, August). Measure it?

manage it? ignore it? software practitioners and technical debt. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering (pp. 50-60).

69

[11] Yli-Huumo, J., Maglyas, A., & Smolander, K. (2016). How do software development teams

manage technical debt?–An empirical study. Journal of Systems and Software, 120, 195-218.

[12] Ampatzoglou, A., Mittas, N., Tsintzira, A. A., Ampatzoglou, A., Arvanitou, E. M.,

Chatzigeorgiou, A., ... & Angelis, L. (2020). Exploring the relation between technical debt

principal and interest: An empirical approach. Information and Software Technology, 128,

106391.

[13] Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., & Fontana, F. A. (2021). A systematic

literature review on technical debt prioritization: Strategies, processes, factors, and tools.

Journal of Systems and Software, 171, 110827.

[14] Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., & Fontana, F. A. (2021). A systematic

literature review on technical debt prioritization: Strategies, processes, factors, and

tools. Journal of Systems and Software, 171, 110827.

[15] Melo, A., Fagundes, R., Lenarduzzi, V., & Santos, W. B. (2022). Identification and

measurement of Requirements Technical Debt in software development: A systematic

literature review. Journal of Systems and Software, 194, 111483.

[16] Soliman, M., Avgeriou, P., & Li, Y. (2021). Architectural design decisions that incur

technical debt—An industrial case study. Information and Software Technology, 139, 106669.

[17] Cunningham, W. (1992). The WyCash portfolio management system. ACM Sigplan Oops

Messenger, 4(2), 29-30.

[18] Besker, T., Martini, A., & Bosch, J. (2018). Managing architectural technical debt: A unified

model and systematic literature review. Journal of Systems and Software, 135, 1-16.

[19] Martini, A. (2018, May). Anacondebt: a tool to assess and track technical debt.

In Proceedings of the 2018 International Conference on Technical Debt (pp. 55-56).

[20] von Zitzewitz, A. (2019, May). Mitigating technical and architectural debt with

sonargraph. In 2019 IEEE/ACM International Conference on Technical Debt (TechDebt) (pp. 66-

67). IEEE.

[21] Tornhill, A. (2018, May). Prioritize technical debt in large-scale systems using CodeScene.

In Proceedings of the 2018 International Conference on Technical Debt (pp. 59-60).

70

[22] Verdecchia, R., Kruchten, P., Lago, P., & Malavolta, I. (2021). Building and evaluating a

theory of architectural technical debt in software-intensive systems. Journal of Systems and

Software, 176, 110925.

[23] Pavlič, L., & Hliš, T. (2019). The Technical Debt Management Tools Comparison. In Eighth

Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications (p. 10).

[24] Rios, N., Spinola, R. O., de Mendonça Neto, M. G., & Seaman, C. (2018, August). A study

of factors that lead development teams to incur technical debt in software projects. In 2018

44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) (pp.

429-436). IEEE.

[25] Kruchten, P., Nord, R., & Ozkaya, I. (2019). Managing Technical Debt: Reducing Friction in

Software Development. Software Engineering Institute.

[27] Atlassian Continuous Integration Tools: Top 7 Comparison,

https://www.atlassian.com/continuous-delivery/continuous-integration/tools, Date of Access

29.12.2023.

[28] Comparitech 10 Best DAST Tools, https://www.comparitech.com/net-admin/dast-tools/, Date

of Access 29.12.2023.

[29] Gartner Best Application Security Testing Reviews 2023: Gartner Peer Insights,

https://www.gartner.com/reviews/market/application-security-testing, Date of Access 29.12.2023.

[30] PeerSpot Top Rated Dynamic Application Security Testing (DAST) Vendors,

https://www.peerspot.com/categories/dynamic-application-security-testing-dast, Date of Access

29.12.2023.

[31] The CTO Club 20 Best Code Review Tools for Developers [2023 Guide],

https://thectoclub.com/tools/best-code-review-tools/, Date of Access 29.12.2023.

[32] Katalon Top 15 Automation Testing Tools 2024, https://katalon.com/resources-

center/blog/automation-testing-tools, Date of Access 29.12.2023.

[33] Sonar Clean Code Tools for Writing Clear, Readable & Understandable Secure Quality

Code, https://www.sonarsource.com/, Date of Access 29.12.2023.

[34] Jenkins, https://www.jenkins.io/, Date of Access 29.12.2023.

https://www.atlassian.com/continuous-delivery/continuous-integration/tools
https://www.comparitech.com/net-admin/dast-tools/
https://www.gartner.com/reviews/market/application-security-testing
https://www.peerspot.com/categories/dynamic-application-security-testing-dast
https://thectoclub.com/tools/best-code-review-tools/
https://katalon.com/resources-center/blog/automation-testing-tools
https://katalon.com/resources-center/blog/automation-testing-tools
https://www.sonarsource.com/
https://www.jenkins.io/

71

[35] Amazon Web Services AWS CodePipeline, https://aws.amazon.com/tr/codepipeline/, Date

of Access 29.12.2023.

[36] LambdaTest Next-Generation Mobile Apps and Cross Browser Testing Cloud,

https://www.lambdatest.com/, Date of Access 29.12.2023.

[37] Cypress JavaScript Component Testing and E2E Testing, https://www.cypress.io/, Date of

Access 29.12.2023.

[38] Ndepend Improve your .NET code quality with NDepend, https://www.ndepend.com/, Date

of Access 29.12.2023.

[39] Structure101-Software Architecture Development, https://structure101.com/, Date of

Access 29.12.2023.

[40] JArchitect Java Static Analysis and Code Quality Tool, https://www.jarchitect.com/, Date of

Access 29.12.2023.

[41] Intruder, https://www.intruder.io/, Date of Access 29.12.2023.

[42] SOOS DAST Product, https://soos.io/, Date of Access 29.12.2023.

[43] Invicti Web Application Security, https://www.invicti.com/, Date of Access 29.12.2023.

[44] Checkmarx Application Security Testing Company Software, https://checkmarx.com/, Date

of Access 29.12.2023.

[45] Synopsys Coverity Static Analysis Software, https://www.synopsys.com/, Date of Access

29.12.2023.

[46] CAST Highlight, https://www.castsoftware.com/, Date of Access 29.12.2023.

https://aws.amazon.com/tr/codepipeline/
https://www.lambdatest.com/
https://www.cypress.io/
https://www.ndepend.com/
https://structure101.com/
https://www.jarchitect.com/
https://www.intruder.io/
https://soos.io/
https://www.invicti.com/
https://checkmarx.com/
https://www.synopsys.com/
https://www.castsoftware.com/

